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Abstract The joint estimation of the location vector and the shape matrix
of a set of independent and identically Complex Elliptically Symmetric (CES)
distributed observations is investigated from both the theoretical and compu-
tational viewpoints. This joint estimation problem is framed in the original
context of semiparametric models allowing us to handle the (generally un-
known) density generator as an infinite-dimensional nuisance parameter. In
the first part of the paper, a computationally efficient and memory saving im-
plementation of the robust and semiparmaetric efficient R-estimator for shape
matrices is derived. Building upon this result, in the second part, a joint esti-
mator, relying on the Tyler’s M -estimator of location and on the R-estimator
of shape matrix, is proposed and its Mean Squared Error (MSE) performance
compared with the Semiparametric Cramér-Rao Bound (SCRB).

Keywords: Semiparametric models, robust estimators, efficient estima-
tors, covariance matrix, Complex Elliptically Symmetric (CES) distributions.

1 Introduction

Inferring the correlation structure of a set of centered data is a key step in many
signal processing and machine learning procedures. Among others, radar/sonar
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detection, image segmentation, dimension reduction, distance learning and
clustering rely on the estimation of the covariance/correlation matrix of an
acquired data set [2]. Along with the need of an estimation of the covariance
matrix, there is another common aspect in all the above-mentioned applica-
tions: the non-Gaussian and heavy-tailed nature of the data. As a consequence,
popular Gaussian and pseudo-Gaussian inference procedures may present a
dramatic performance decay as extensively shown in statistics and signal pro-
cessing literature (see e.g. [33] and the references therein).

Motivated by a wide range of experimental evidences and measurement
campaigns, the (Real or Complex) Elliptically Symmetric (ES) model has been
recently adopted to characterize the statistical data behavior. The RES and
CES models in fact have been proved to be able to catch the data heavy-
tailedness in a large variety of applications such us radar/sonar [23, 29], hyper-
spectral imaging [8, 17] and image/data classification [28, 30] just to cite a
few. From now on, in this paper, we will focus our attention only on complex-
valued, CES distributed, datasets. This choice allows us to work in the most
general framework, since the obtained results can be easily “brought back” to
the real-valued case.

Together with its generality, the second feature that has placed the elliptical
model in the spotlight of signal processing and machine learning communities
is its “parsimony” in terms of required parameters. In fact, CES model is
fully specified by two finite dimensional parameters, i.e. a location vector
and a covariance/scatter matrix (as the classical Gaussian model) and by an
infinite dimensional functional parameter, usually called density generator,
characterizing the data heavy-tailedness. To better understand the role of this
infinite dimensional term, let us take a step back to introduce the notion of
semiparametric model.

Let {zl}Ll=1 be a set of L independent and identically distributed (i.i.d.) N -
dimensional observations sharing the same probability density function (pdf),
i.e. CN 3 zl ∼ pZ , ∀l. A parametric model Pθ , {pZ |pZ(zl;θ),θ ∈ Θ} is
then defined as a family of pdfs parameterized by a finite dimensional vector
θ ∈ Θ. As a classical example, in multivariate Gaussian-based inference, θ is
set up by the mean vector µ and by the covariance/scatter matrix Σ.

However, a parametric model is generally too “narrow” and it fails to
take into account all the actual uncertainty about the data distribution that
is generally present in practical scenarios. Semiparametric models have been
then introduced to provide with an additional (functional) degree of freedom
[1]. A semiparametric model Pθ,h , {pZ |pZ(zl;θ, h),θ ∈ Θ, h ∈ G } is a family
of pdf parameterized by a finite dimensional vector θ ∈ Θ (as in the classical
parametric case) and by a function h belonging to some suitable function space
G. Usually, in most applications, θ ∈ Θ is the parameter vector of interest,
while h ∈ G can be considered as a nuisance function that “contains” the
missing knowledge of the functional form of the data pdf pZ . Consequently,
inference procedures in semiparametric models aim at estimating/testing for
θ ∈ Θ in the presence of an unknown function h ∈ G whose estimation is not
strictly required.
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It is now immediate to realize that the CES model can be framed as a
semiparametric model [3, 10, 12]. Formally, the pdf pZ of a CES-distributed
random vector zl ∈ CN can be expressed as [22]: 1

pZ(zl|µ,Σ, h) = |Σ|−1h
(
(zl − µ)HΣ−1(zl − µ)

)
, (1)

where, as said before, the final dimensional parameter of interest θ ∈ Θ is
composed of a location vector µ and by the scatter matrix Σ that represents
the correlation structure of the data, while the nuisance density generator h
belongs to the set

G =

{
h : R+

0 → R+

∣∣∣∣∫ ∞
0

tN−1h(t)dt <∞,
∫
pZ = 1

}
. (2)

Two considerations are now in order:

– The identifiability issue: the scatter matrix Σ and the density generator
h are not jointly identifiable. Consequently, only scaled versions, usually
called shape matrix, V , Σ/s(Σ) can be estimated [22]. According to our
recent work [6], from now on we consider the shape matrix

V1 , Σ/[Σ]1,1, (3)

i.e. the one obtained form the scatter matrix by constraining its first top-
left element to be equal to one.

– Augmented complex representation of θ: Following the rules of the Wirtinger
calculus [13, 15, 27], in order to take into account the complex-value nature
of the location vector µ and of the shape matrix V1, the finite-dimensional
parameter θ has to be built up as [6]: 2

θ , (µ>,µH, vec(V1)>)> ∈ Θ ⊆ Cq, (4)

where q = N(N +2)−1 (= 2N +N2−1) and Cq is a complex-vector space
on real field of dimension q [13, 15]. Note that the “−1” is due to the fact
that we constraint the first top-left element of V1 to be equal to 1, so it
does not have to be estimated.

Building upon the previous considerations, the semiparamentric CES model
[3] can be cast as:

Pθ,h =
{
pZ |pZ(zl|θ, h) = |V1|−1h

(
(zl − µ)HV−11 (zl − µ)

)
;θ ∈ Θ, h ∈ G

}
,

(5)

1 It is worth highlighting that the “definition” of density generator used here is a slightly
different from the one used in [22]. Unlike [22], we include the normalization factor Cm,h
in h, i.e. our density generator is the product Cm,hh(·). We do this for a specific reason:
the normalization term Cm,h depends on h itself. Then, in a semiparametric framework, we
need to define the whole product Cm,hh(·) as nuisance function and not just h(·).

2 The operator vec(A) defines the N2 − 1-dimensional vector obtained from vec (A) by
deleting its first element, i.e. vec (A) , [a11, vec(A)T ]T . In general, in this paper, we always
adopt the same notation used in our previous work [6].
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Estimating θ ∈ Θ in the presence of different “degrees of uncertainty” on
the density generator h is a well-known problem in robust statistics and signal
processing. The most popular class of robust estimators for θ ∈ Θ belongs
to the family of M -estimators [14] and has been firstly proposed by Maronna
in [18] and further developed and investigated by Tyler [31]. However, if on
one hand the Maronna/Tyler M -estimators have the remarkable robustness
property, they fail to be semiparametrically efficient, i.e their Mean Square
Error (MSE) does not achieve the Semiparametric Cramér-Rao Bound [3, 4].

In order to fill this gap, in their seminal work Hallin, Oja and Paindaveine
[12] proposed a new class of rank-based R-estimators of the shape matrix
for a set of centered RES-distributed data able to be both distributionally
robust and (almost) semiparametric efficient. 3 The real-valued R-estimator
proposed in [12] has been expended to the case of CES-distributed data in
our recent work [6] where a theoretical and simulative analysis of its “finite-
sample” performance has been provided as well.

Following the trail of [6, 12], the present paper has two main goals:

1. Derive a “computationally efficient” version of the complex-valued shape
matrix R-estimator proposed in [6],

2. Investigate the joint estimation problem of the location parameter µ and
the shape matrix V1 in the presence of an unknown density generator h. 4

Having a “computationally efficient” implementation of an estimator is of
fundamental importance in real-time applications or in high-dimensional data
sets. The new version of the R-estimator of the shape matrix proposed in
Section 2 of this paper is computationally faster and “memory saving” than
the previous implementation in [6] making its exploitation possible in a wider
range of applications. The paper continues with an exhaustive theoretical in-
vestigation of the statistical interrelation underlying the joint semiparametric
estimation of the location vector µ and of the shape matrix V1 provided in
Section 3 while a robust semiparametric (and computationally) efficient joint
estimator of location and shape is discussed in Section 4. The numerical anal-
ysis of the performance of the proposed joint estimator is presented in Section
5. Finally, some concluding remarks are collected in Section 6.

We conclude this nonproductive Section with three paragraphs summariz-
ing some useful notations and definitions that serve as prerequisites to the
comprehension of the material presented in the rest of the paper.

Algebraic notation: For the sake of consistency with our previous works, in
the rest of this paper, we adopt the same notation already introduced in [6, 7].
In addition to the list of symbols detailed in [6], we will make extensive use of
some specific matrices whose definitions are collected below. In particular:

P = [e2|e3| · · · |eN2 ]
>
, (6)

3 The interested reader can find the Matlab and Python code related to our implementa-
tion of this R-estimator in both RES- and CES- distributed data at https://github.com/

StefanoFor.
4 This part has been partially addressed in our related conference paper [7].
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where ei is the i-th vector of the canonical basis of RN2

, the projection matrix

Π⊥vec(IN ) = IN2 −N−1vec(IN )vec(IN )>, (7)

and

LV1 = P
(
V
−>/2
1 ⊗V

−1/2
1

)
Π⊥vec(IN ), (8)

where V1 is the shape matrix previously introduced.
CES-related notation: Without any claim of completeness, we collect below

the basic properties and notation on CES distributed random vectors. We
refer the reader to the excellent review paper [22] for additional material. Let
θ0 , (µ>0 ,µ

H
0 , vec(V1,0)>)> be the “true” parameter vector to be estimated

and let h0 be the actual (and unknown) density generator. Let CN 3 z ∼
p0(z) ≡ pZ(z;θ0, h0) ≡ CESN (µ0,V1,0, h0) a CES-distributed random vector

parameterized by a location vector µ0, a shape matrix V1,0 , Σ0/[Σ0]1,1
where Σ0 represents the relevant scatter matrix and a density generator h0 ∈
G. Then, z satisfies the following stochastic representation:

z =d µ0 +
√
QΣ1/2

0 u, (9)

where u ∼ U(CSN ) is a complex random vector uniformly distributed on the
unit N -sphere and =d stands for “has the same distribution as”. The 2nd-order
modular variate Q is independent from u and such that (s.t.):

Q =d (z− µ0)HΣ−10 (z− µ0) , Q, (10)

Moreover, Q is distributed according to the following pdf:

pQ,0(q) = πNΓ (N)−1qN−1h0(q), (11)

where Γ (·) is the Gamma function. For any h ∈ G, the function ψ is defined
as

ψ(t) , d lnh(t)/dt. (12)

Finally, the expectation operator of any measurable function f with respect
to p0(z) is indicated as E0{f(z)} ,

∫
f(z)pZ(z;θ0, h0)dz.

Ranks: The concept of ranks of a set of relevant random variables are a
useful tool in non-parametric statistics and numerous works can be found on
this topic (see [9], [32, Ch. 13] and references therein). Far be it from us to pro-
pose a comprehensive overview of the use of ranks in robust statistics, in the
following we limit ourselves to introduce their definition since they will play
a crucial role in the definition of the R-estimator of the shape matrix. Let
{a1, a2, . . . , aL} be a set of L continuous i.i.d. random variables with unspeci-
fied distribution. Let us rearrange the variables al, l = 1, . . . , L in an ascending
order aL(1) < aL(2) < · · · < aL(L) and, consequently build the vector of order

statistics as vA , [aL(1), aL(2), . . . , aL(L)]
>. Then, the rank rl ∈ N/{0} of al is

the position index of al in vA.
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2 A computationally efficient implementation of the R-estimator
for shape matrices

Building upon the the seminal work of Hallin, Oja and Paindaveine [12], in our

recent papers [5, 6] a robust and semiparametric efficient R-estimator V̂1,R

for the shape matrix V1,0 of CES distributed data has been proposed and its
properties investigated. This R-estimator has its roots in the Le Cam’s theory
of efficient “one-step” estimator [16] and consequently it can be expressed as
a linear combination of two terms:

vec(V̂1,R) = vec(V̂?
1) + L−1/2Υ̂C

−1
∆̃C

V̂?
1

, (13)

where V̂?
1 is a

√
L-consistent preliminary estimator that provides V̂1,R with the

consistency property while the linear correction term L−1/2Υ̂C
−1
∆̃C

V̂?
1

makes

V̂1,R semiparametric efficient. Let us have a closer look at the two quantities
which constitute the linear correction term (all the details can be found in [6]).

The (N2 − 1)-dimensional vector ∆̃C
V̂?

1

is the “distribution-free” version of

the efficient central sequence [1] and it can be explicitly expressed as:

∆̃C
V̂?

1

,
1√
L

LV̂?
1

L∑
l=1

Kh

(
r?l

L+ 1

)
vec(û?l (û

?
l )

H), (14)

where {r?l }Ll=1 are the ranks of the random variables {Q̂?l }Ll=1 defined as:

Q̂?l , (zl − µ̂?)H[V̂?
1]−1(zl − µ̂?), (15)

µ̂? and V̂?
1 are two

√
L-consistent preliminary estimators 5 of the location

vector µ0 and of the shape matrix V1,0. The random vectors {û?l }Ll=1 are
given by:

û?l , (Q̂?l )
−1/2[V̂?

1]−1/2(zl − µ̂?). (16)

The function Kh : (0, 1) → R+ is the so-called score function and it is a key

element to guarantee the robustness of V̂1,R. We refer the reader to [6] for
further details on the assumptions that a score function has to satisfy and on
how to built it starting from the set of density generators G.

The (N2 − 1)× (N2 − 1) matrix Υ̂C represents the “distribution-free” ap-
proximation of the semiparametric Fisher Information Matrix (SFIM) and it
is given by [6, Eq. (52)]:

Υ̂ , α̂CLV̂?
1
LH
V̂?

1

, (17)

where α̂C is a complex scalar that can be obtained as [6, Eq. (53)]:

α̂C =
||∆̃C

V̂?
1+L

−1/2H0
C
− ∆̃C

V̂?
1

||
||LV̂?

1
LH
V̂?

1

vec(H0
C)|| , (18)

5 The choice of these preliminary estimators and of their impact on the asymptotic per-
formance of V̂1,R will be extensively discussed in the next Sections.
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and H0
C is a “small perturbation”, Hermitian, matrix s. t. [H0

C]1,1 = 0.

By substituting Eqs. (14) and (17) in Eq. (13), the R-estimator V̂1,R can
be explicitly re-written as (see [6, Eq. (54)]):

vec(V̂1,R) =vec(V̂?
1)+

1

Lα̂C

[
LV̂?

1
LH
V̂?

1

]−1
LV̂?

1

∑L

l=1
Kh

(
r?l

L+ 1

)
vec(û?l (û

?
l )

H).
(19)

For an in-depth discussion about the semiparametric efficiency and the
robustness property characterizing V̂1,R, we refer the readers to our previous
works [5, 6] and to the related statistical literature [10, 11, 12]. Here we focus
our attention on an important aspect that has not been fully addressed yet: the
computational cost underlying the calculation of Eq. (19). As already noted in
[6, Sec. V.C], there is a main (computational) drawback in Eqs. (19) and (18)

that really stands out: to evaluate the N ×N matrix V̂1,R (or equivalently its

(N2 − 1)-dimensional vectorized counterpart vec(V̂1,R)), we have to calculate
the (N2−1)×(N2−1) matrix LV̂?

1
. This may become a cumbersome bottleneck

in many practical applications.
Fortunately, as proved in Appendix A of this paper, it is possible to recast

Eqs. (19) and (18) in order to avoid the calculation of LV̂?
1
. In particular,

a computationally efficient “matrix version” of the R-estimator V̂1,R can be
expressed as:

V̂1,R = V̂?
1 +

1

α̂C

(
W − [W]1,1 V̂?

1

)
, (20)

α̂C =
||zV̂?

1+L
−1/2H0

C
− zV̂?

1
||∥∥∥vec

(
(V̂?

1)−1H0
C(V̂?

1)−1 −N−1tr
(

(V̂?
1)−1H0

C

)
(V̂?

1)−1
)∥∥∥ , (21)

where:
W , L−1/2(V̂?

1)1/2R(V̂?
1)1/2. (22)

zV̂?
1
, vec

(
(V̂?

1)−1/2R(V̂?
1)−1/2 − ζ(V̂?

1)−1
)
, (23)

R ,
1√
L

L∑
l=1

Kh

(
r?l

L+ 1

)
û?l (û

?
l )

H, (24)

ζ ,
1

N
√
L

L∑
l=1

Kh

(
r?l

L+ 1

)
. (25)

It is worth stressing that Eqs. (20) and (21) involve matrix and vector
quantities of (linear) dimension equal at most to N2 and this fact leads to
a great reduction in terms of computational load with respect to Eqs. (19)
and (18) that, on the contrary, rely on the calculation of matrices whose linear
dimension is N4. A quantitative analysis of the reduction of the computational
load will be provided in Sec. 5. We conclude this Section by noticing that an
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expression similar to Eq. (20) characterizing the R-estimator of the shape
matrix of a set of Real Elliptically Symmetric (RES) distributed data has
been firstly provided in [12, Eq. (3.9)].

Remark : The interested reader can find our Matlab implementation of the
computationally efficient R-estimator V̂1,R for the shape matrix of both Real
and Complex Elliptically Symmetric distributed data at https://github.

com/StefanoFor.

3 Semiparametric joint estimation of location and shape: the role
of the nuisance density generator

After having introduced a computationally efficient version of the R-estimator
of the shape matrix V1,0, in this Section we will focus on a different still
interrelated topic: which is the impact of not knowing the location vector µ0

when estimating V1,0? Along with its theoretical implication, the answer to
this question has a practical importance as well. As shown in the previous
Section in fact (see Eqs. (15) and (16)), the R-estimator V̂1,R relies on µ̂?,

i.e. a
√
L-consistent preliminary estimator of µ0. However, Section 2 does not

provide any suggestion on which specific estimator µ̂? should we choose among
all the possible

√
L-consistent ones. In this Section then we are going to provide

with the necessary theoretical framework that will allow us to make the good
choice for µ̂?.

Let us start by formalizing the problem. Let {zl}Ll=1 be a set of CES dis-
tributed vectors such that CN 3 zl ∼ p0 ≡ CESN (µ0,V1,0, h0), ∀l where
µ0 and V1,0 have to be considered as two finite-dimensional parameters of
interest while h0 is a functional nuisance term.

The two fundamental questions underlying the above mentioned joint es-
timation problem are:

1. What is the impact of not knowing h0 on the joint estimation of (µ0,V1,0)?
2. What is the (asymptotic) impact that the lack of knowledge of µ0 has on

the estimation of V1,0 and vice versa?

To answer these two questions, we need to introduce the semiparametric
efficient score vector s̄θ0

and the semiparamatric Fisher Information Matrix
(SFIM) Ī(θ0|h0). As discussed in the relevant statistical literature for a generic
semiparametric model [1] and recently investigated for the specific CES model
[3, 4], the semiparametric efficient score vector for the joint estimation of
location and shape matrix of a set of CES distributed data is given by:

s̄θ0 = [s̄>µ0
, s̄>µ∗

0
, s̄>vec(V1,0)

]> = sθ0 −Π(sθ0 |Th0), (26)

where sθ0 is the “classical” score vector defined, by means of the Wirtinger
derivatives, as [13]:

[sθ0
]i , ∂ ln pZ(z;θ, h0)/∂θ∗i |θ=θ0

, i = 1, . . . , q (27)
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and θ is given in Eq. (4) and q = N(N+2)−1. The term Π(sθ0 |Th0) indicates
the orthogonal projection of sθ0 on the nuisance tangent space Th0 of the CES
model Pθ,h in Eq. (5) evaluated at the true density generator h0. Specifically,
Π(sθ0

|Th0
) tells us the loss of information on the estimation of θ0 due to the

lack of knowledge of h0. In our previous work [3, Sec. III.A], we proved the
following facts:

1. The projection of s̄µ0 and s̄µ∗
0

onto Th0 is equal to zero:

Π(sµ0
|Th0

) = Π(sµ∗
0
|Th0

) = 0N , (28)

This implies that the lack of knowledge of h0 does not have any impact on
the (asymptotic) estimation of the location parameter µ0.

2. The projection of s̄vec(V1,0) onto Th0
is generally different from zero and it

is given by:

Π(svec(V1,0)|Th0
) = −(1 +N−1Qψ0(Q))vec(V−11,0), (29)

where ψ0 is defined in Eq. (12) while Q is given in Eq. (10). Consequently,
not knowing h0 does have an impact on the estimation of the shape matrix
V1,0.

Points 1) and 2) answer the first question.
To address the second question about the (asymptotic) cross-information

between µ0 and V1,0, we need to check the structure of the SFIM Ī(θ0|h0).
The SFIM for the joint estimation of µ0 and V1,0 in the CES semiparametric
model Pθ,h in Eq. (5) has been evaluated in [3, Sec. III.C] as:

Ī(θ0|h0) , E0{s̄θ0
s̄Hθ0
} =

(
Ī(µ0|h0) 02N×(N2−1)

0(N2−1)×2N Ī(V1,0|h0)

)
, (30)

Ī(µ0|h0) =
E{Qψ0(Q)2}

N

(
V−11,0 0N×N

0N×N V−∗1,0

)
, (31)

Ī(vec(V1,0)|h0) =
E{Q2ψ0(Q)2}
N(N + 1)

LV1,0
LHV1,0

=

=
E{Q2ψ0(Q)2}
N(N + 1)

P
[
V−>1,0 ⊗V−11,0 −N−1vec(V−11,0)vec(V−11,0)H

]
P>,

(32)

where, as before, the function ψ0 is given in Eq. (12) while Q is given in Eq.
(10). Eq. (30) clearly shows that the efficient SFIM Ī(θ0|h0) is a block-diagonal
matrix, i.e. the cross-information terms between the location µ0 and the shape
matrix V1,0 are equal to zero. Consequently, the relevant estimation problems
are (asymptotically) decorrelated and can be considered as two separate esti-
mation problems. This fact greatly simplify the implementation of a practical
joint estimation algorithm. In fact, in estimating the shape matrix V1,0, the
true (and generally unknown) location vector µ0 can be substituted by any of
its
√
L-consistent estimators without any impact on the (asymptotic) perfor-

mance of the estimator of V1,0. Of course, the vice versa holds true as well,
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i.e. any
√
L-consistent estimator of V1,0 can be used in place of the true shape

matrix without any (asymptotic) impact on the estimation of µ0. This im-
portant theoretical result will be exploited in the next Section, to implement
a robust, semiparametric efficient joint estimator for the location and shape
matrix in CES distributed data.

4 A robust semiparametric efficient joint estimator of location and
shape

Robust estimation of location and shape in elliptical distributions is a well-
known topic in statistics and signal processing since the seminal paper of
Maronna [18]. In particular, in [18], a general class of joint M -estimators of
µ0 and V1,0 (in the presence of an unknown density generator h0) has been
introduced as the “fixed-point” solution of the following system of equations:∑L

l=1
u1(Q̂

1/2
l )(zl − µ̂) = 0, (33)

L−1
∑L

l=1
u2(Q̂l)(zl − µ̂)(zl − µ̂)H = V̂1, (34)

where, according to Eq. (10), Q̂l = (zl − µ̂)HV̂−11 (zl − µ̂), and {zl}Ll=1 is
the set of available CES distributed observations such that CN 3 zl ∼ p0 ≡
CESN (µ0,V1,0, h0), ∀l. The functions u1 and u2 have to satisfy a given set of
assumptions that guarantees the existence and the uniqueness of the solution
of Eqs. (33) and (34) (see [18] for the real case and [22] for the extension to
the complex one).

4.1 Tyler’s joint M -estimator of µ0 and V1,0

Among different possible choices for u1 and u2, Tyler in [31] (see also [8], [20]
and [28]) showed that the functions u1(Q) = Q−1/2 and u2(Q) = NQ−1 lead
to the “minimax robust” M -estimator of the location and shape. Specifically,
by defining

Q̂
(k)
l = (zl − µ̂(k))H[V̂

(k)
1 ]−1(zl − µ̂(k)), (35)

where k indicates the iteration number, we have that the Tyler’s joint M -
estimator of location and shape, i.e. (µ̂Ty, V̂1,Ty), can be obtained as the
convergence points (k →∞) of the following iterations:

µ̂
(k+1)
Ty =

[
L∑
l=1

[Q̂
(k)
l ]−1/2

]−1 L∑
l=1

(
Q̂

(k)
l

)−1/2
zl, (36)

 V̂
(k+1)
Ty = N

L

L∑
l=1

(zl−µ̂(k)
Ty )(zl−µ̂

(k)
Ty )

H

Q̂
(k)
l

.

V̂
(k+1)
1,Ty , V̂

(k+1)
Ty /[V̂(k+1)

Ty ]1,1.

(37)
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Note that, even if a formal proof of the joint convergence of Eqs. (36) and (37)
is still an open problem, this iterative algorithm has been shown to provide
reliable estimates in most of the scenarios of possible interest in practical
applications. We refer to [8] where joint M -estimators of the form (33)-(34)
have been exploited in hyperspectral anomaly detection problems and to [28]
where joint M -estimators have been derived as part of a general Expectation-
Maximization (EM) algorithm for clustering applications.

The estimators µ̂Ty and V̂1,Ty have the remarkable property of being
√
L-

consistent under any (unknown) density generator h ∈ G (see [31] for the
real-valued case and [20] for the complex-valued case). Consistency, however,
is only one of the properties that good robust estimators should have. Another
important property is the (semiparametric) efficiency.

4.2 The Semiparametric Cramér-Rao Bound (SCRB)

A robust estimator is said to be semiparametric efficient if its Mean Square
Error (MSE) achieves the Semiparametric Cramér-Rao Bound (SCRB) [1] as
the number of available observations L goes to infinity. The SCRB for the joint
estimation of location and shape in CES distributed data has been derived in
[3] as the inverse of the SFIM in Eq. (30). We refer the reader to [3] for all
the details about its calculation. Here, for the sake of conciseness, we report
only the final expression. As discussed before, since the efficient score vectors
for the location, i.e. s̄µ0

and s̄µ∗
0
, are orthogonal to the nuisance tangent space

Th0
, the SCRB on the estimation of µ0 is equal to the “classical” CRB and it

is given by

SCRB(µ0|h0) , Ī(µ0|h0)−1 =
N

E{Qψ0(Q)2}

(
V1,0 0N×N

0N×N V∗1,0

)
. (38)

On the other hand, since as previously shown in Eq. (29), Π(svec(V1,0)|Th0) 6=
0, the SCRB on the estimation of the shape matrix V1,0 is tighter than the
“classical” CRB (that is obtained for a perfectly known h0) and is given by:

SCRB(vec(V1,0)|h0) , Ī(vec(V1,0)|h0)−1 =
N(N + 1)

E{Q2ψ0(Q)2}
[
LV1,0

LHV1,0

]−1
,

(39)
where the matrix LV1,0

is defined in Eq. (8). It is worth mentioning that the
expression of the SCRB given in Eq. (39) is valid only if the shape matrix is
defined through the constraint in Eq. (3), i.e. when the first-top left element
of V1,0 is forced to be equal to 1. The interested reader may find the general
form of the SCRB for the shape matrix estimation under any constraints (e.g.
constraints on its trace or determinant) in [3, 4].

In [3, 4], it has been shown that robust M -estimators of the shape ma-
trix are not semiparametric efficient. This efficiency issue can be overcome by
exploiting the R-estimator of the shape given in Eqs. (20) in Sec. 2.
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4.3 An R-estimator of V1,0 in non-centered CES data

In this subsection, we finally put all our previous results together to provide a
robust and semiparametric efficient joint estimation of the location vector µ0

and of the shape matrix V1,0 of a set {zl}Ll=1 of CES-distributed observations.
As previously discussed, in order to gain the semiparametric efficiency, we
will exploit the R-estimator in Eq. (20). As amply discussed in Section 2, to
implement this estimator we need:

1. A preliminary
√
L-consistent estimator V̂?

1 for the shape matrix and an-
other

√
L-consistent estimator of the location vector µ̂?,

2. A score function Kh : (0, 1)→ R+.

Due to their properties of minimax robustness and
√
L-consistency under

any density generator h ∈ G, the Tyler’s estimators previously introduced in
Eqs. (36) and (37) are perfect candidates for this role, i.e. µ̂? ≡ µ̂Ty and V̂?

1 ≡
V̂1,Ty. Specifically, the general expression of the (computationally efficient) R-
estimator given in Section 2 can be recast as:

V̂1,R = V̂1,Ty +
1

α̂C

(
W − [W]1,1 V̂1,Ty

)
. (40)

Note that, all the other related quantities reported in Eqs. (22) - (25) have to

be evaluated by substituting to the generic preliminary estimators µ̂? and V̂?
1

with the Tyler’s estimators for location and scale, µ̂Ty and V̂1,Ty respectively.
Regarding the second point, i.e. the choice of a score function Kh, we will

exploit two different options [6]:

– The complex van der Waerden score function:

KvdW (u) , Φ−1G (u), u ∈ (0, 1), (41)

where Φ−1G indicates the inverse function of the cdf of a Gamma-distributed
random variable with parameters (N, 1).

– The complex tν-score given by:

Ktν (u) =
N(2N + ν)F−12N,ν(u)

ν + 2NF−12N,ν(u)
, u ∈ (0, 1), (42)

where F2N,ν(u) stands for the Fisher cdf with 2N and ν ∈ (0,∞) degrees
of freedom.

The van der Waerden score KvdW has been proved to have excellent perfor-
mance in terms of efficiency in the estimation of the shape matrix in centered
CES data [6, 24] while the tν-score Ktν is able to provide with a better ro-
bustness to the presence of possible outliers thanks to the presence of the
additional “tuning” parameter ν.

To conclude this sub section, the pseudocode for the implementation of the
R-estimator in Eq. (40) is provided in the following while the related Matlab
code can be downloaded at https://github.com/StefanoFor.
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Algorithm 1 Computationally efficient R-estimator for V1,0

Input: z1, . . . , zL.
Output: V̂1,R.
1: Evaluate the preliminary Tyler’s joint estimators:

µ̂Ty ← limk→∞ µ̂
(k)
Ty in (36),

V̂1,Ty ← limk→∞ V̂
(k+1)
1,Ty in (37),

2: Data centring: {zl}Ll=1 ← {zl − µ̂Ty}
L
l=1,

3: for l = 1 to L do
4: Q̂?l ← zHl V̂−1

1,Tyzl,

5: û?l ← (Q̂?l )−1/2V̂
−1/2
1,Ty zl,

6: end for
7: Evaluate the ranks {r?1 , . . . , r?L} of {Q̂?1, . . . , Q̂?L},
8: Select a score function Kh (KvdW in (41) and Ktν in (42) are two options),

9: R← 1√
L

∑L
l=1Kh

(
r?l
L+1

)
û?l (û?l )H,

10: ζ ← 1

N
√
L

∑L
l=1Kh

(
r?l
L+1

)
,

11: W← L−1/2(V̂1,Ty)1/2R(V̂1,Ty)1/2,

12: z
V̂1,Ty

← vec
(

(V̂1,Ty)−1/2R(V̂1,Ty)−1/2 − ζ(V̂1,Ty)−1
)
,

13: Obtain α̂C through the following two steps:
1) Generate a random Hermitian matrix H0

C s.t. [H0
C]1,1 = 0,

2) α̂C ←
||z

V̂1,Ty+L−1/2H0
C
−z

V̂1,Ty
||

‖vec((V̂1,Ty)
−1H0

C(V̂1,Ty)
−1−N−1tr((V̂1,Ty)

−1H0
C)(V̂1,Ty)

−1)‖ ,

Remark: The entries of H0
C should be “small enough” to guarantee that V̂1,Ty +

L−1/2H0
C is a positive definite matrix.

14: The last step: V̂1,R ← V̂1,Ty + 1
α̂C

(
W − [W]1,1 V̂1,Ty

)
,

15: return V̂1,R

5 Numerical results

This Section will be basically divided in two parts. In the first one, we discuss
the computational advantages that the “matrix version” of the R-estimator
provided in Eq. (20) has with respect to the “vectorized version” derived in [6]
and recalled in Eq. (19). In the second part we finally assess, through numerical

simulations, the semiparametric efficiency of the joint estimator (µ̂Ty, V̂1,R),
given in Eqs. (36) and (40), respectively.

Data generation: In both the two parts, we generate the set of non-centered
CES distributed data {zl}Ll=1 according to a Generalized Gaussian (GG) dis-
tribution [25], such that CN 3 zl ∼ p0, ∀l where:

p0(zl) = |Σ0|−1h0
(
(zl − µ0)HΣ−10 (zl − µ0)

)
, (43)

while the relevant density generator is given by:

h0(t) ,
sΓ (N)b−N/s

πNΓ (N/s)
exp

(
− t

s

b

)
, t ∈ R+. (44)

We chose the GG distribution to assess the performance of the proposed joint
estimator because of its flexibility in characterizing the data “heavy-tailness”
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with respect to the Gaussian one. In fact, according to the value of the shape
parameter s > 0, the GG density generator in (44) is able to define a distri-
bution with both heavier tails (0 < s < 1) and lighter tails (s > 1) compared
to the Gaussian one (s = 1).

The parameters adopted in our simulations are:

– Σ0 is a Toeplitz Hermitian matrix whose first column is [1, ρ, . . . , ρN−1]T ;
ρ = 0.8ej2π/5 and N = 8.

– Shape matrix: V1,0 , Σ0/[Σ0]1,1.

– Location vector: [µ0]n , 0.5ej1π/7(n−1), n = 1, . . . , N .
– Scale parameter: b = [σ2

ZNΓ (N/s)/Γ ((N + 1)/s)]s in Eq. (44) and σ2
Z =

E{Q}/N = 4.
– Numbers of observations: L = 5N . This clearly defines a “finite-sample”

regime.

5.1 Computational efficiency of the proposed “matrix version” of the
R-estimator for shape

As amply discussed in Section 2, the crucial difference between the “vector-
ized” implementation of the R-estimator given in Eq. (19) and its “matrix
version” provided in Eq. (20) is in the fact that, while the first one relies on
the calculation of N2 ×N2 matrix quantities, the latter only involves N ×N
matrices. Clearly, this will lead to a huge gain in term of computational effi-
ciency, in particular when the data dimension N increases. In order to highlight
this fact, in Fig. 1 we report the time (in seconds) required for the calculation
of three shape matrix estimators as function of the data dimension N :

– The Tyler’s estimator V̂1,Ty in Eq. (37),

– The “vectorized version” of the R-estimator in Eq. (19) exploiting V̂1,Ty

as preliminary estimator for the shape matrix,
– The “matrix version” of the R-estimator in Eq. (20) exploiting V̂1,Ty as

preliminary estimator for the shape matrix.

The curves in Fig. 1 are clear: the proposed “matrix version” of the R-
estimator is more than two orders of magnitude faster that the “vectorized”
one derived in [6]. The gap between the two clearly increases as the data
dimension N increases. Moreover, it can be noted that the computational time
of the “matrix version” of the R-estimator in Eq. (20) is similar to the one
of the Tyler’s estimator. These considerations provide us with hard evidence
in favor of the computational effectiveness of the “matrix version” of the R-
estimator derived in Section 2 and suggest us to adopt it as standard form of
the R-estimator.

5.2 Statistical efficiency of the joint estimator for location and shape

As previously anticipated, this last sub session is devoted to the assessment of
the semiparametric efficiency of the joint estimator (µ̂Ty, V̂1,R), where µ̂Ty is
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Fig. 1 Comparison among the time riquired to calculate the Tyler’s estimator, the “vec-
torized” and the proposed “matrix” versions of the R-estimator.

the Tyler’s estimator in Eq. (36) of the location vector µ0, while V̂1,R is the
R-estimator in Eq. (40) of the shape matrix V1,0 exploiting the Tyler’s joint

estimator (µ̂Ty, V̂1,Ty) as preliminary
√
L-consistent estimators.

As basis of comparison, we also report the performance of the joint “sam-
ple” estimator (µ̂SM , V̂1,SCM ), defined as:

µ̂SM , L−1
∑L

l=1
zl, (45){

Σ̂SCM , L−1
∑L
l=1(zl − µ̂SM )(zl − µ̂SM )H

V̂1,SCM , Σ̂SCM/[Σ̂SCM ]1,1.
(46)

The performance assessment will be performed in terms of the following
indices:
Bias indices

– Bias index for the estimation of the location vector µ0:

βγ , ||E{µ̂γ − µ0}||2, (47)

where γ ∈ {SM, Ty} indicates the sample mean in Eq. (45) or the Tyler’s
estimator in Eq. (36).

– Bias index for the estimation of the shape matrix V1,0:

ϕγ , ||E{vec(V̂1,γ −V1,0)}||2, (48)

where γ ∈ {SCM, Ty,R−vdW,R−t5} indicates a specif estimator among
the SCM in Eq. (46), the Tyler’s shape estimator in Eq. (37) and the R-
estimator in Eq. (40) that relies on the Tyler’s one as preliminary estimator.

Note that for the R-estimator we have two options: V̂1,R−vdW indicates
the R-estimator in Eq. (40) exploiting the van der Waerden score in Eq.

(41) while V̂1,R−t5 indicates again R-estimator in Eq. (40) but exploiting
the t-score in Eq. (42) with ν = 5.
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Mean Squared Error (MSE) indices

– MSE index for the estimation of the location vector µ0:

%γ , ||E{(µ̂aγ − µa0)(µ̂aγ − µa0)H}||F , (49)

where γ ∈ {SM, Ty} and for a given x ∈ CN , xa , (xT ,xH)T ∈ C2N .
– MSE index for the estimation of the shape matrix V1,0:

ςγ , ||E{vec(V̂1,γ −V1,0)vec(V̂1,γ −V1,0)H}||F , (50)

and γ ∈ {SCM, Ty,R − vdW,R − t5}, as before, indicates the relevant
estimator at hand.

As lower bound indices, we use

εSCRB,µ0 , ||SCRB(µ0|h0)||F , (51)

εSCRB,V1,0 , ||SCRB(vec(V1,0)|h0)||F , (52)

where SCRB(µ0|h0) is given in (38) and SCRB(vec(V1,0)|h0) in (39).
The bias indices of the sample mean in Eq. (45) and of the Tyler’s estimator

in Eq. (37) are reported in Fig. 1. As we can note, the bias is on the order
of 10−3, so it can be considered negligible and the two estimators unbiased.
Fig. 3 shows the MSE performance of the sample mean µ̂SM estimator in
(45) and of the Tyler’s estimator µ̂Ty in (36) compared to the lover bound in
(38). As wee can see, µ̂Ty is almost efficient with respect to SCRB(µ0|h0) in
heavy-tailed data (0 < s < 1) and outperforms µ̂SM that it is known to be
non robust. On the other hand, µ̂SM is efficient in the Gaussian case (s = 1),
and tends to have better performance than µ̂Ty for s > 1. However, in this
light-tails scenario, the MSE of µ̂Ty does not explode and remains close to the
µ̂SM ’s one.
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Fig. 2 Bias in the estimation of µ0 for the sample mean and for the Tyler’s estimator.
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Fig. 4 Bias in the estimation of V1,0 for the SCM, the Tyler’s estimator and the R-
estimator exploiting both the van der Waerden and the t5-score functions.

As far it concerns the shape matrix estimation, the simulation results are
shown in Fig. 4 for the bias and Fig. 5 for the MSE. The main fact here is
that the two R-estimators V̂1,R−vdW and V̂1,R−t5 in Eq. (40) outperforms

the Tyler’s estimator V̂1,Ty in (37) for every values of s, i.e. for both heavy-

tailed and light-tailed data. Moreover, as expected, V̂1,R−vdW and V̂1,R−t5
greatly outperform the sample covariance matrix V̂1,SCM in Eq. (46) in the
presence of heavy-tailed data (0 < s < 1), while their MSE is of the same

order for s > 1. Between the two R-estimators, we can notice that V̂1,R−vdW
has better performance than V̂1,R−t5 in terms of both bias and MSE. Finally,
a comment on the efficiency of the above-mentioned estimator is in order. As
we can see, there is a gap between the MSE indices of V̂1,SCM , V̂1,Ty and

V̂1,R−vdW and V̂1,R−t5 and the SCRB. However, it is worth to underline that
our aim here is to compare the performance of shape matrix estimators in a
“finite-sample” regime, i.e. with a number of observations equal to L = 5N
that represents a reasonable value in many practical applications. Of course,
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Fig. 5 MSE in the estimation of V1,0 for the SCM, the Tyler’s estimator and the R-
estimator exploiting both the van der Waerden and the t5-score functions..

by letting L→∞, it can be shown that both the two R-estimators V̂1,R−vdW
and V̂1,R−t5 achieve the bound SCRB(vec(V1,0)|h0) in Eq. (39) as predicted
by theoretical considerations [6, 12].

In summary, previous simulations highlight the benefits that the proposed
robust R-estimator can bring. Specifically, it always outperforms the Tyler’s
estimator in both heavy- and light-tails scenarios. Moreover its estimation
performance is way better that the SCM one in heavy-tailed data while it is
almost similar in light-tailed scenarios: high gain, very small loss. These very
promising results promote the use of the R-estimator to other problems, as
the structured shape estimation discussed in [19, 21].

6 Conclusions

This paper dealt with the fundamental problem of estimating the location
vector and the shape matrix of a set of CES distributed data. In the first
part of this work, we derived a computationally efficient version of the robust
and semiparametric efficient R-estimator already proposed in [6]. Remarkably,
the new “matrix version” of the R-estimator can provide the same estimate
of the shape matrix but at a computational time that is more than two or-
der of magnitude smaller with respect to the “vectorized version” previously
derived in [6]. This fundamental property suggests us to use the new version
given in Eq. (20) as the default version of the R-estimator. In the second part
of this paper, the joint estimation of the location vector µ0 and the shape
matrix V1,0 of a set of i.i.d. CES-distributed, multivariate observations has
been addressed. Building upon the asymptotic decorrelation of the location
and shape estimation problems, a joint estimator that relies on the Tyler’s
M -estimator µ̂Ty for µ0 and on a recently proposed R-estimator V̂1,R for
V1,0 has been discussed and its performance, in terms of both bias and MSE,
assessed and compared with the relevant Semiparametric Cramér-Rao Bound.
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Our simulation results, obtained for GG-distributed data, have shown that
joint estimator (µ̂Ty, V̂1,R) of location and shape represents a good alterna-
tive to the classical Maronna’s joint M -estimators. In particular, in terms of
shape matrix estimation, the proposed joint estimator outperforms the joint
Tyler’s estimator in both heavy-tailed and light-tailed data. Future works will
investigate the application of the proposed estimator in robust clustering and
distance learning problems.

A Appendix: Proof of the Eqs. (20) and (21)

The main aim of this Appendix is to show how to obtain a closed from expres-
sion of the (complex-valued) R-estimator for the shape matrix V1, provided
in (19) (see also [6, Eq. (54)]) by avoiding the use of the matrix LV1

. The
matrix LV1

is in fact a structured (N2 − 1)× (N2 − 1) that is built upon the
N ×N matrix V1. Consequently, if we are able to obtain a expression of the
R-estimator that relies only on V1 and not on LV1 , we would gain a lot in
terms of computational efficiency.

At first, let us recall here the expression of the R-estimator introduced in
Eqs. (19) and (18):

vec(V̂1,R) = vec(V̂?
1)+

1

Lα̂C

[
LV̂?

1
LH
V̂?

1

]−1
LV̂?

1

∑L

l=1
Kh

(
r?l

L+ 1

)
vec(û?l (û

?
l )

H).

where
α̂C = ||∆̃C

V̂?1+L−1/2H0
C
−∆̃C

V̂?1
||/||LV̂?1

LH
V̂?1

vec(H0
C)||,

and H0
C is a “small perturbation”, Hermitian, matrix s. t. [H0

C]1,1 = 0.
In the calculation proposed below, we make extensive use of the following

properties holding for conforming matrices (see e.g. [26]):

tr(AB) = vec(A>)>vec(B) (A.1)

vec(AXB) = (B> ⊗A)vec(X) (A.2)

(A⊗B)(C⊗D) = (AC⊗BD) (A.3)

(A⊗B)> = A> ⊗B>, (A⊗B)H = AH ⊗BH (A.4)

A.1 Matrix version of the central sequence

The “distribution-free” version of the (complex-valued) efficient central se-

quence ∆̃C
V̂?

1

is defined in Eq. (14) as:

∆̃C
V̂?

1

,
1√
L

LV̂?
1

L∑
l=1

Kh

(
r?l

L+ 1

)
vec(û?l (û

?
l )

H).
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Let us start by showing how to re-write ∆̃C
V̂?

1

without using LV1 .

For notation simplicity, we introduce the scalar κl as:

κl ,
1√
L
Kh

(
r?l

L+ 1

)
(A.5)

Let us now define the N2-dimensianl vector zV̂?
1

as:

zV̂?
1

=
[
z1, (zV̂?

1
)>
]>

=
[
z1, (∆̃C

V̂?
1

)>
]>

. (A.6)

where z1 is an unspecified complex number. Then, from Eq. (14) and from
the definition of the matrices P and LV1

in Eqs. (6) and (8) respectively, the
vector zV̂?

1
can be cast as:

zV̂?
1

=
[
(V̂?

1)−>/2 ⊗ (V̂?
1)−1/2

]
Π⊥vec(IN )

L∑
l=1

κlvec(û?l (û
?
l )

H)

=
[
(V̂?

1)−>/2 ⊗ (V̂?
1)−1/2

] [ L∑
l=1

κlvec(û?l (û
?
l )

H)− 1

N
vec(IN )

L∑
l=1

κl

]
= vec

(
(V̂?

1)−1/2R(V̂?
1)−1/2 − ζ(V̂?

1)−1
)

(A.7)

where:

R ,
L∑
l=1

κlû
?
l (û

?
l )

H, (A.8)

and

ζ ,
1

N

L∑
l=1

κl. (A.9)

Consequently, we have that:

∆̃C
V̂?

1

= vec
(

(V̂?
1)−1/2R(V̂?

1)−1/2 − ζ(V̂?
1)−1

)
, zV̂?

1
. (A.10)

Note that in (A.7), we have used the fact that:

tr((û?l (û
?
l )

H) = (û?l )
Hû?l = 1, ∀l. (A.11)

To avoid confusion, we indicate as zV̂?
1

the “LV̂?
1
-free” version of ∆̃C

V̂?
1

obtained in Eq. (A.10). It is important to underline in fact that zV̂?
1

does not

make use of the “unnecessary large” (N2 − 1) × (N2 − 1) matrix LV̂?
1
, while

only N ×N matrices are involved.
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A.2 An “LV̂?
1
-free” version of the scalar α̂C

Let us define the N2-dimensional vector as:

rV̂?
1

=
[
r1, (rV̂?

1
)>
]>

=
[
r1, (LV̂?

1
LH
V̂?

1

vec(H0
C))>

]>
, (A.12)

where r1 is an unspecified complex scalar.
By using the fact that, by definition, [H0

C]1,1 = 0, we have that:

r0
V̂?

1

=
[
r01, (LV̂?

1
LH
V̂?

1

vec(H0
C))>

]>
=

[(
(V̂?

1)−>/2 ⊗ (V̂?
1)−1/2

)
Π⊥vec(IN )

(
(V̂?

1)−>/2 ⊗ (V̂?
1)−1/2

)H]
vec(H0

C)

=

[
(V̂?

1)−> ⊗ (V̂?
1)−1 −N−1vec

(
(V̂?

1)−1
)

vec
(

(V̂?
1)−1

)H]
vec(H0

C)

= vec
(

(V̂?
1)−1H0

C(V̂?
1)−1 −N−1tr

(
(V̂?

1)−1H0
C

)
(V̂?

1)−1
)

(A.13)

Then, from Eq. (A.12), we get:

r0
V̂?

1

= vec
(

(V̂?
1)−1H0

C(V̂?
1)−1 −N−1tr

(
(V̂?

1)−1H0
C

)
(V̂?

1)−1
)
, (A.14)

that depends only on N ×N matrix quantities.
Finally, by using the previous results, an “LV̂?

1
-free” version of α̂C can be

expressed as:

α̂C =
||∆̃C

V̂?
1+L

−1/2H0
C
− ∆̃C

V̂?
1

||
||LV̂?

1
LH
V̂?

1

vec(H0
C)|| =

||zV̂?
1+L

−1/2H0
C
− zV̂?

1
||

||r0
V̂?

1

|| . (A.15)

A.3 An “LV̂?
1
-free” matrix version of the R-estimator

By using the scalar κl, previously defined in Eq. (A.5), we can re-write the
expression of the R-estimator in Eq. (19) as:

vec(V̂1,R) = vec(V̂?
1) +

1√
Lα̂C

[
LV̂?

1
LH
V̂?

1

]−1
LV̂?

1

L∑
l=1

κlvec(û?l (û
?
l )

H). (A.16)

By using the “LV̂?
1
-free” version of ∆̃C

V̂?
1

obtained in Eq. (A.10), the ex-

pression in Eq. (A.16) can be rewritten as:

vec(V̂1,R) = vec(V̂?
1) +

1√
Lα̂C

P>
[
LV̂?

1
LH
V̂?

1

]−1
P×

vec
(

(V̂?
1)−1/2R(V̂?

1)−1/2 − ζ(V̂?
1)−1

)
.

(A.17)
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To get rid of the “unnecessary large” N2 ×N2 matrix P>
[
LV̂?

1
LH
V̂?

1

]−1
P

we make use of the extension to the complex field of the result obtained in
Lemma 3.1 of [10]. Specifically, it can be shown that (see [12, Appendix A.2]):

P>
[
LV̂?

1
LH
V̂?

1

]−1
P

=
[
IN2 − vec(V̂?

1)e>1
] [

(V̂?
1)> ⊗ V̂?

1

] [
IN2 − vec(V̂?

1)e>1
]H
,

(A.18)

where e1 is the first vector of the canonical basis of RN2

.

Through direct calculation, we can easily show that:

P>
[
LV̂?

1
LH
V̂?

1

]−1
Pvec

(
(V̂?

1)−1/2R(V̂?
1)−1/2 − ζ(V̂?

1)−1
)

=
[
IN2 − vec(V̂?

1)e>1
] [

(V̂?
1)> ⊗ V̂?

1

]
×

vec
(

(V̂?
1)−1/2R(V̂?

1)−1/2 − ζ(V̂?
1)−1

)
=
[
IN2 − vec(V̂?

1)e>1
]

vec
(

(V̂?
1)1/2R(V̂?

1)1/2 − ζV̂?
1

)
= vec

(
W − [W]1,1 V̂?

1

)
,

(A.19)

where

W , L1/2(V̂?
1)1/2R(V̂?

1)1/2

= (V̂?
1)1/2

[
1

L

L∑
l=1

Kh

(
r?l

L+ 1

)
û?l (û

?
l )

H

]
(V̂?

1)1/2.
(A.20)

By collecting the previous results, the R-estimator in Eq. (19) can be ex-
pressed as:

vec(V̂1,R) = vec(V̂?
1) +

1

α̂C
vec(W − [W]1,1 V̂?

1). (A.21)

Finally, in matrix form, we have:

V̂1,R = V̂?
1 +

1

α̂C

(
W − [W]1,1 V̂?

1

)
, (A.22)

where

α̂C =
||zV̂?

1+L
−1/2H0

C
− zV̂?

1
||

||r0
V̂?

1

|| . (A.23)

This concludes the proof of Eqs. (20) and (21).
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